Publication Reporting
If you have recently published any work that includes data acquired on UC Davis NMR/MRI instrumentation, we ask that you please report your work using the submission form below. This information is vital toward assessing the general health of the NMR Facility as well as ensuring that we are eligible for internal and external funding opportunities. Please report journal articles, reviews, book chapters, posters or presentations at meetings, patents, and anything else you think we should know about.
Recent Publications Utilizing the UC Davis NMR Facility
2013 / 2014 Fiscal Year
[1] S. Park, C. Li, F. Haeseleer, K. PALCZEWSKI, and J. B. Ames, “Structural Insights into Activation of the Retinal L-type Ca2+ Channel (Cav1.4) by Ca2+-binding Protein 4 (CaBP4),” Journal of Biological Chemistry, vol. 289, no. 45, pp. 31262–31273, Nov. 2014.
[2] Y. Zhang, L. Matt, T. Patriarchi, Z. A. Malik, D. Chowdhury, D. K. Park, A. Renieri, J. B. Ames, and J. W. Hell, “Capping of the N-terminus of PSD-95 by calmodulin triggers its postsynaptic release,” The EMBO Journal, Apr. 2014.
[3] A. M. D. J. B. A. Sunghyuk Lim, “Structural diversity of neuronal calcium sensor proteins and insights for activation of retinal guanylyl cyclase by GCAP1,” Frontiers in Molecular Neuroscience, vol. 7, 2014.
[4] S. Lim, N. C. Rockwell, S. S. Martin, J. L. Dallas, J. C. Lagarias, and J. B. Ames, “Photoconversion changes bilin chromophore conjugation and protein secondary structure in the violet/orange cyanobacteriochrome NpF2163g3 ,” Photochemical & Photobiological Sciences, vol. 13, no. 6, pp. 951–962, 2014.
[5] I. V. Peshenko, E. V. Olshevskaya, S. Lim, J. B. Ames, and A. M. Dizhoor, “Identification of Target Binding Site in Photoreceptor Guanylyl Cyclase-activating Protein 1 (GCAP1),” Journal of Biological Chemistry, vol. 289, no. 14, pp. 10140–10154, Apr. 2014.
[6] S. Lim, N. C. Rockwell, S. S. Martin, J. C. Lagarias, and J. B. Ames, “1H, 15N, and 13C chemical shift assignments of cyanobacteriochrome NpF2164g3 in the photoproduct state,” Biomol NMR Assign, vol. 8, no. 2, pp. 259–262, Jun. 2013.
[7] S. Park, C. Li, and J. B. Ames, “1H, 15N, and 13C chemical shift assignments of murine calcium-binding protein 4,” Biomol NMR Assign, vol. 8, no. 2, pp. 361–364, Aug. 2013.
[8] C. Li and J. B. Ames, “1H, 13C, and 15N chemical shift assignments of neuronal calcium sensor protein, hippocalcin,” Biomol NMR Assign, vol. 8, no. 1, pp. 63–66, Dec. 2012.
[9] S. Lim, I. V. Peshenko, A. M. Dizhoor, and J. B. Ames, “Structural Insights for Activation of Retinal Guanylate Cyclase by GCAP1,” PLoS ONE, vol. 8, no. 11, p. e81822, Nov. 2013.
[10] W. K. Myers, X. Xu, C. Li, J. O. Lagerstedt, M. S. Budamagunta, J. C. Voss, R. D. Britt, and J. B. Ames, “Double Electron–Electron Resonance Probes Ca 2+-Induced Conformational Changes and Dimerization of Recoverin,” Biochemistry, vol. 52, no. 34, pp. 5800–5808, Aug. 2013.
[11] C. Li, M. Enomoto, A. M. Rossi, M.-D. Seo, T. Rahman, P. B. Stathopulos, C. W. Taylor, M. Ikura, and J. B. Ames, “CaBP1, a neuronal Ca2+ sensor protein, inhibits inositol trisphosphate receptors by clamping intersubunit interactions,” Proceedings of the National Academy of Sciences, vol. 110, no. 21, pp. 8507–8512, May 2013.
[12] X. Xu, C. L. Olson, D. M. Engman, and J. B. Ames, “1H, 15N, and 13C chemical shift assignments of the calflagin Tb24 flagellar calcium binding protein of Trypanosoma brucei,” Biomol NMR Assign, vol. 7, no. 1, pp. 9–12, Mar. 2012.
[13] S. Lim, I. V. Peshenko, A. M. Dizhoor, and J. B. Ames, “Backbone 1H, 13C, and 15N resonance assignments of guanylyl cyclase activating protein-1, GCAP1,” Biomol NMR Assign, vol. 7, no. 1, pp. 39–42, Mar. 2012.
[14] M. Pinter, T. Harter, M. McCarthy, and M. Augustine, “Towards Using NMR to Screen for Spoiled Tomatoes Stored in 1,000 L, Aseptically Sealed, Metal-Lined Totes,” Sensors, vol. 14, no. 3, pp. 4167–4176, Mar. 2014.
[15] J. C. Erker and M. P. Augustine, “Analytical approximations to inhomogeneously broadened, radiation damped free precession and echo signals,” Journal of Magnetic Resonance, vol. 238, pp. 106–114, Jan. 2014.
[16] L. Chang, I. E. Jacobs, M. P. Augustine, and A. J. Moulé, “Correlating dilute solvent interactions to morphology and OPV device performance,” Organic Electronics, vol. 14, no. 10, pp. 2431–2443, Oct. 2013.
[17] V. S. P. K. Neti, M. R. Cerón, A. Duarte-Ruiz, M. M. Olmstead, A. L. Balch, and L. Echegoyen, “High-yield, regiospecific bis-functionalization of C 70 using a Diels–Alder reaction in molten anthracene ,” Chem. Commun., vol. 50, no. 73, pp. 10584–10587, 2014.
[18] F. L. Bowles, M. M. Olmstead, and A. L. Balch, “Preparation and Crystallographic Characterization of C 60{η 1-Ru(CO) 2(η 5-C 5H 5)} 2: A Locally Crowded Organometallic Fullerene Without the Usual η 2-Bonding,” J. Am. Chem. Soc, vol. 136, no. 9, pp. 3338–3341, Mar. 2014.
[19] K. B. Ghiassi, M. M. Olmstead, and A. L. Balch, “Gadolinium-containing endohedral fullerenes: structures and function as magnetic resonance imaging (MRI) agents,” Dalton Transactions, vol. 43, no. 20, p. 7346, 2014.
[20] M. Yamada, H. Kurihara, M. Suzuki, J. D. Guo, M. Waelchli, M. M. Olmstead, A. L. Balch, S. Nagase, Y. Maeda, T. Hasegawa, X. Lu, and T. Akasaka, “Sc 2@C 66Revisited: An Endohedral Fullerene with Scandium Ions Nestled within Two Unsaturated Linear Triquinanes,” J. Am. Chem. Soc, vol. 136, no. 21, pp. 7611–7614, May 2014.
[21] A. L. Svitova, K. B. Ghiassi, C. Schlesier, K. Junghans, Y. Zhang, M. M. Olmstead, A. L. Balch, L. Dunsch, and A. A. Popov, “Endohedral fullerene with μ3-carbido ligand and titanium-carbon double bond stabilized inside a carbon cage,” Nat Comms, vol. 5, Apr. 2014.
[22] M. Izquierdo, M. R. Cerón, M. M. Olmstead, A. L. Balch, and L. Echegoyen, “[5,6]-Open Methanofullerene Derivatives of I h-C 80,” Angew. Chem., vol. 125, no. 45, pp. 12042–12046, Sep. 2013.
[23] J. Zhang, F. L. Bowles, D. W. Bearden, W. K. Ray, T. Fuhrer, Y. Ye, C. Dixon, K. Harich, R. F. Helm, M. M. Olmstead, A. L. Balch, and H. C. Dorn, “A missing link in the transformation from asymmetric to symmetric metallofullerene cages implies a top-down fullerene formation mechanism,” Nature Chem, vol. 5, no. 10, pp. 880–885, Sep. 2013.
[24] F. L. Bowles, B. Q. Mercado, K. B. Ghiassi, S. Y. Chen, M. M. Olmstead, H. Yang, Z. Liu, and A. L. Balch, “Ordered Structures from Crystalline Carbon Disulfide Solvates of the Nano-Tubular Fullerenes D5h(1)-C 90and D5h-C 70,” Crystal Growth & Design, vol. 13, no. 10, pp. 4591–4598, Oct. 2013.
[25] J. G. Harrison, Y. B. Zheng, P. A. Beal, and D. J. Tantillo, “Computational Approaches to Predicting the Impact of Novel Bases on RNA Structure and Stability,” ACS Chem. Biol., vol. 8, no. 11, pp. 2354–2359, Nov. 2013.
[26] K. Onizuka, J. G. Harrison, A. A. Ball-Jones, J. M. Ibarra-Soza, Y. Zheng, D. Ly, W. Lam, S. Mac, D. J. Tantillo, and P. A. Beal, “Short Interfering RNA Guide Strand Modifiers from Computational Screening,” J. Am. Chem. Soc, vol. 135, no. 45, pp. 17069–17077, Nov. 2013.
[27] T. W. Myers and L. A. Berben, “Aluminium–ligand cooperation promotes selective dehydrogenation of formic acid to H 2 and CO 2 ,” Chemical Science, vol. 5, no. 7, pp. 2771–2777, 2014.
[28] J. P. Krogman, M. W. Bezpalko, and L. A. Berben, “One-Electron Oxidation Chemistry and Subsequent Reactivity of Diiron Imido Complexes - Inorganic Chemistry (ACS Publications),” Inorganic …, 2014.
[29] T. W. Myers and L. A. Berben, “Aluminum–Ligand Cooperative N–H Bond Activation and an Example of Dehydrogenative Coupling,” J. Am. Chem. Soc, vol. 135, no. 27, pp. 9988–9990, Jul. 2013.
[30] T. W. Myers and L. A. Berben, “Aluminum–Amido-Mediated Heterolytic Addition of Water Affords an Alumoxane,” Organometallics, vol. 32, no. 22, pp. 6647–6649, Nov. 2013.
[31] L. Li, Y. Liu, Y. Wan, Y. Li, X. Chen, W. Zhao, and P. G. Wang, “Efficient Enzymatic Synthesis of Guanosine 5′-Diphosphate-Sugars and Derivatives,” Organic Letters, vol. 15, no. 21, pp. 5528–5530, Nov. 2013.
[32] J. Hwang, H. Yu, H. Malekan, G. Sugiarto, Y. Li, J. Qu, Van Nguyen, D. Wu, and X. Chen, “Highly efficient one-pot multienzyme (OPME) synthesis of glycans with fluorous-tag assisted purification ,” Chem. Commun., vol. 50, no. 24, pp. 3159–3162, 2014.
[33] H. Yu, K. Lau, V. Thon, C. A. Autran, E. Jantscher-Krenn, M. Xue, Y. Li, G. Sugiarto, J. Qu, S. Mu, L. Ding, L. Bode, and X. Chen, “Synthetic Disialyl Hexasaccharides Protect Neonatal Rats from Necrotizing Enterocolitis,” Angew. Chem. Int. Ed., vol. 53, no. 26, pp. 6687–6691, May 2014.
[34] M. M. Muthana, C. W. Hsiao, H. Yu, and X. Chen, “Chemoenzymatic synthesis of sialosides containing C7-modified sialic acids and their application in sialidase substrate specificity studies,” Carbohydrate …, 2014.
[35] N. T. Tran, S. O. Wilson, and A. K. Franz, “Supramolecular hydrogen-bonding assembly of silanediols with bifunctional heterocycles ,” Chem. Commun., vol. 50, no. 28, pp. 3738–3740, 2014.
[36] B. H. Shupe, E. E. Allen, J. P. MacDonald, S. O. Wilson, and A. K. Franz, “Synthesis of Spirocarbamate Oxindoles via Intramolecular Trapping of a β-Silyl Carbocation by an N-Boc Group,” Organic Letters, vol. 15, no. 13, pp. 3218–3221, Jul. 2013.
[37] I. Van Bogaert, G. Zhang, J. Yang, J. Y. Liu, Y. Ye, W. Soetaert, and B. D. Hammock, “Preparation of 20-HETE using multifunctional enzyme type 2-negative Starmerella bombicola,” The Journal of Lipid Research, vol. 54, no. 11, pp. 3215–3219, Oct. 2013.
[38] T. Chen, K. Takrouri, S. Hee-Hwang, S. Rana, R. Yefidoff-Freedman, J. Halperin, A. Natarajan, C. Morisseau, B. Hammock, M. Chorev, and B. H. Aktas, “Explorations of Substituted Urea Functionality for the Discovery of New Activators of the Heme-Regulated Inhibitor Kinase,” J. Med. Chem., vol. 56, no. 23, pp. 9457–9470, Dec. 2013.
[39] M. L. Nording, J. Yang, K. Georgi, C. H. Karbowski, J. B. German, R. H. Weiss, R. J. Hogg, J. Trygg, B. D. Hammock, and A. M. Zivkovic, “Individual Variation in Lipidomic Profiles of Healthy Subjects in Response to Omega-3 Fatty Acids,” PLoS ONE, vol. 8, no. 10, p. e76575, Oct. 2013.
[40] T. Kálai, R. Altman, I. Maezawa, M. Balog, C. Morisseau, J. Petrlova, B. D. Hammock, L.-W. Jin, J. R. Trudell, J. C. Voss, and K. Hideg, “Synthesis and functional survey of new Tacrine analogs modified with nitroxides or their precursors,” European Journal of Medicinal Chemistry, vol. 77, pp. 343–350, Apr. 2014.
[41] T. R. Harris, G. M. Butov, and B. D. Hammock, “Symmetric adamantyl-diureas as soluble epoxide hydrolase inhibitors,” Bioorganic & medicinal …, 2014.
[42] I.-H. Kim, I.-H. Lee, H. Nishiwaki, B. D. Hammock, and K. Nishi, “Structure–activity relationships of substituted oxyoxalamides as inhibitors of the human soluble epoxide hydrolase,” Bioorg. Med. Chem., vol. 22, no. 3, pp. 1163–1175, Feb. 2014.
[43] A. Durmus, G. Gunbas, S. C. Farmer, M. M. Olmstead, M. Mascal, B. Legese, J.-Y. Cho, R. L. Beingessner, T. Yamazaki, and H. Fenniri, “Synthesis of N-substituted Pyrido[4,3- d]pyrimidines for the Large-Scale Production of Self-Assembled Rosettes and Nanotubes,” J. Org. Chem., vol. 78, no. 22, pp. 11421–11426, Nov. 2013.
[44] M. Carrasco, I. Mendoza, M. Faust, J. López-Serrano, R. Peloso, A. Rodríguez, E. Álvarez, C. Maya, P. P. Power, and E. Carmona, “Terphenyl Complexes of Molybdenum and Tungsten with Quadruple Metal–Metal Bonds and Bridging Carboxylate Ligands,” J. Am. Chem. Soc, vol. 136, no. 25, pp. 9173–9180, Jun. 2014.
[45] F. Lips, J. D. Queen, J. C. Fettinger, and P. P. Power, “Unusual coordination of tetrylenes to molybdenum carbonyl fragments ,” Chem. Commun., vol. 50, no. 42, pp. 5561–5564, 2014.
[46] P. Zhao, Z. Brown, J. C. Fettinger, F. Grandjean, G. J. Long, and P. P. Power, “Synthesis and Structural Characterization of a Dimeric Cobalt(I) Homoleptic Alkyl and an Iron(II) Alkyl Halide Complex,” Organometallics, vol. 33, no. 8, pp. 1917–1920, Apr. 2014.
[47] J. W. Dube, C. M. E. Graham, C. L. B. Macdonald, Z. D. Brown, P. P. Power, and P. J. Ragogna, “Reversible, Photoinduced Activation of P 4by Low-Coordinate Main Group Compounds,” Chem. Eur. J., vol. 20, no. 22, pp. 6739–6744, Mar. 2014.
[48] J. N. Boynton, J. D. Guo, F. Grandjean, J. C. Fettinger, S. Nagase, G. J. Long, and P. P. Power, “Synthesis and Characterization of the Titanium Bisamide Ti{N(H)Ar iPr 6} 2(Ar iPr 6= C 6H 3-2,6-(C 6H 2-2,4,6- iPr 3) 2and Its TiCl{N(H)Ar iPr 6} 2Precursor: Ti(II) → Ti(IV) Cyclization,” Inorganic Chemistry, vol. 52, no. 24, pp. 14216–14223, Dec. 2013.
[49] A. M. Bryan, G. J. Long, F. Grandjean, and P. P. Power, “Synthesis, Spectroscopic Characterization, and Determination of the Solution Association Energy of the Dimer [Co{N(SiMe 3) 2} 2] 2: Magnetic Studies of Low-Coordinate Co(II) Silylamides [Co{N(SiMe 3) 2} 2L] (L = PMe 3, Pyridine, and THF) and Related Species That Reveal Evidence of Very Large Zero-Field Splittings,” Inorganic Chemistry, vol. 52, no. 20, pp. 12152–12160, Oct. 2013.
[50] J.-A. Dolyniuk, D. C. Kaseman, S. Sen, J. Zhao, F. E. Osterloh, and K. Kovnir, “mP-BaP 3: A New Phase from an Old Binary System,” Chem. Eur. J., vol. 20, no. 34, pp. 10829–10837, May 2014.
[51] T. Endo, M. Imanari, H. Seki, S. Sen, and K. Nishikawa, “Fast cation dynamics in the crystalline state of an imidazolium-based room temperature ionic liquid due to the presence of a tiny amount of H2O,” Solid State Ionics, vol. 259, pp. 41–45, Jun. 2014.
[52] S. Sen, T. Edwards, S. K. Kim, and S. Kim, “Investigation of the Potential Energy Landscape for Vacancy Dynamics in Sc-Doped CeO 2,” Chem. Mater., vol. 26, no. 5, pp. 1918–1924, Mar. 2014.
[53] T. Endo and S. Sen, “Ionic Dynamics in [C 4mim]NTf 2in the Glassy and Liquid States: Results from 13C and 1H NMR Spectroscopy,” J. Phys. Chem. B, p. 141211150747009, Dec. 2014.
[54] S. Sen, “Spectroscopic Observation of Fractal Packing of Oxygen in Variably Modified Glassy Tetrahedral Networks,” J. Phys. Chem. Lett., vol. 5, no. 3, pp. 555–559, Feb. 2014.
[55] D. C. Kaseman, R. E. Youngman, B. G. Aitken, and S. Sen, “Structure and bonding characteristics of chalcogenide glasses in the system BaSeGa2Se3GeSe2,” Journal of Non- …, 2013.
[56] G. Mera, I. Menapace, S. Widgeon, S. Sen, and R. Riedel, “Photoluminescence of as-synthesized and heat-treated phenyl-containing polysilylcarbodiimides: role of crosslinking and free carbon formation in polymer-derived ceramics,” Appl. Organometal. Chem., vol. 27, no. 11, pp. 630–638, Oct. 2013.
[57] J. Fulmer, O. I. Lebedev, V. V. Roddatis, D. C. Kaseman, S. Sen, J.-A. Dolyniuk, K. Lee, A. V. Olenev, and K. Kovnir, “Clathrate Ba 8Au 16P 30: The ‘Gold Standard’ for Lattice Thermal Conductivity,” J. Am. Chem. Soc, vol. 135, no. 33, pp. 12313–12323, Aug. 2013.
[58] J. T. Moore, N. V. Hanhan, M. E. Mahoney, S. P. Cramer, and J. T. Shaw, “Enantioselective Synthesis of Isotopically Labeled Homocitric Acid Lactone,” Organic Letters, vol. 15, no. 22, pp. 5615–5617, Nov. 2013.
[59] N. A. Sorto, M. J. Di Maso, M. A. Muñoz, R. J. Dougherty, J. C. Fettinger, and J. T. Shaw, “Diastereoselective Synthesis of γ- and δ-Lactams from Imines and Sulfone-Substituted Anhydrides,” J. Org. Chem., vol. 79, no. 6, pp. 2601–2610, Mar. 2014.
[60] J. T. Smilowitz, A. O'Sullivan, D. Barile, J. B. German, B. Lonnerdal, and C. M. Slupsky, “The Human Milk Metabolome Reveals Diverse Oligosaccharide Profiles,” Journal of Nutrition, vol. 143, no. 11, pp. 1709–1718, Oct. 2013.
[61] X. He, D. O. Mishchuk, J. Shah, B. C. Weimer, and C. M. Slupsky, “Cross-talk between E. coli strains and a human colorectal adenocarcinoma-derived cell line,” Sci. Rep., vol. 3, pp. –, Jan. 2000.
[62] V. K. Tso, B. C. Sydora, R. R. Foshaug, T. A. Churchill, J. Doyle, C. M. Slupsky, and R. N. Fedorak, “Metabolomic Profiles Are Gender, Disease and Time Specific in the Interleukin-10 Gene-Deficient Mouse Model of Inflammatory Bowel Disease,” PLoS ONE, vol. 8, no. 7, p. e67654, Jul. 2013.
[63] E. L. Chin, D. O. Mishchuk, A. P. Breksa, and C. M. Slupsky, “Metabolite Signature of CandidatusLiberibacter asiaticus Infection in Two Citrus Varieties,” J. Agric. Food Chem., vol. 62, no. 28, pp. 6585–6591, Jul. 2014.